A Study of Graph Spectra for Comparing Graphs
نویسندگان
چکیده
The spectrum of a graph has been widely used in graph theory to characterise the properties of a graph and extract information from its structure. It has been less popular as a representation for pattern matching for two reasons. Firstly, more than one graph may share the same spectrum. It is well known, for example, that very few trees can be uniquely specified by their spectrum. Secondly, the spectrum may change dramatically with a small change structure. In this paper we investigate the extent to which these factors affect graph spectra in practice, and whether they can be mitigated by choosing a particular matrix representation of the graph. There are a wide variety of graph matrix representations from which the spectrum can be extracted. In this paper we analyse the adjacency matrix, combinatorial Laplacian, normalised Laplacian and unsigned Laplacian. We also study the use of the spectrum derived from the heat kernel matrix and path length distribution matrix. We investigate the cospectrality of these matrices over large graph sets and show that the Euclidean distance between spectra tracks the edit distance over a wide range of edit costs, and we analyse the stability of this relationship. We then use the spectra to match and classify the graphs and demonstrate the effect of the graph matrix formulation on error rates.
منابع مشابه
THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA
The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...
متن کاملINTEGER-MAGIC SPECTRA OF CYCLE RELATED GRAPHS
For any h in N , a graph G = (V, E) is said to be h-magic if there exists a labeling l: E(G) to Z_{h}-{0} such that the induced vertex set labeling l^{+: V(G) to Z_{h}} defined by l^{+}(v)= Summation of l(uv)such that e=uvin in E(G) is a constant map. For a given graph G, the set of all for which G is h-magic is called the integer-magic spectrum of G and is denoted by IM(G). In this paper, the ...
متن کاملCOSPECTRALITY MEASURES OF GRAPHS WITH AT MOST SIX VERTICES
Cospectrality of two graphs measures the differences between the ordered spectrum of these graphs in various ways. Actually, the origin of this concept came back to Richard Brualdi's problems that are proposed in cite{braldi}: Let $G_n$ and $G'_n$ be two nonisomorphic simple graphs on $n$ vertices with spectra$$lambda_1 geq lambda_2 geq cdots geq lambda_n ;;;text{and};;; lambda'_1 geq lambda'_2...
متن کاملSpectra of Some New Graph Operations and Some New Class of Integral Graphs
In this paper, we define duplication corona, duplication neighborhood corona and duplication edge corona of two graphs. We compute their adjacency spectrum, Laplacian spectrum and signless Laplacian. As an application, our results enable us to construct infinitely many pairs of cospectral graphs and also integral graphs.
متن کاملOn the energy of non-commuting graphs
For given non-abelian group G, the non-commuting (NC)-graph $Gamma(G)$ is a graph with the vertex set $G$ $Z(G)$ and two distinct vertices $x, yin V(Gamma)$ are adjacent whenever $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.
متن کاملSpectra of some new extended corona
For two graphs $mathrm{G}$ and $mathrm{H}$ with $n$ and $m$ vertices, the corona $mathrm{G}circmathrm{H}$ of $mathrm{G}$ and $mathrm{H}$ is the graph obtained by taking one copy of $mathrm{G}$ and $n$ copies of $mathrm{H}$ and then joining the $i^{th}$ vertex of $mathrm{G}$ to every vertex in the $i^{th}$ copy of $mathrm{H}$. The neighborhood corona $mathrm{G}starmathrm{H}$ of $mathrm{G}$ and $...
متن کامل